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Algebraic relations of multiple zeta values
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Abstract. The subject of the survey is a multidimensional generalization of the
Riemann zeta function as a function of natural argument.
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1. Introduction

In the region Re s > 1, the Riemann zeta function may be defined by the con-
vergent series

ζ(s) =

∞∑
n=1

1

ns
. (1)

One of interesting and still unsolved problems is the problem of determining poly-
nomial relations over Q for the numbers ζ(s), s = 2, 3, 4, . . . . Thanks to Euler, the
formula

ζ(s) = − (2πi)sBs

2s!
for s = 2, 4, 6, . . . , (2)

is known; the knowledge gives the expression of the values of the zeta function at
even integers in terms of the number

π = 4
∞∑

n=0

(−1)n

2n+ 1
= 3.14159265358979323846 . . .

and the Bernoulli numbers Bs ∈ Q that are defined by the generating function

t

et − 1
= 1− t

2
+

∞∑
s=2

Bs
ts

s!
, Bs = 0 for s > 3 odd. (3)

Relation (2) yields the coincidence of the rings Q[ζ(2), ζ(4), ζ(6), ζ(8), . . . ] and
Q[π2], hence, due to Lindemann’s theorem [17] on the transcendence of π, we may
conclude that each of the rings has transcendence degree 1 over the field of rational
numbers. It is much less known on the arithmetic nature of the values of the zeta
function at odd integers s = 3, 5, 7, . . . : Apéry has proved [1] the irrationality of
the number ζ(3) and, recently, Rivoal settles [22] the infiniteness of the set of irra-
tional numbers among ζ(3), ζ(5), ζ(7), . . . . Conjecturally, each of these numbers is
transcendent, and the full answer on the above-stated question, about polynomial
relations over Q for the values of series (1) with s > 2 integer, looks very simple.
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Conjecture 1. The numbers

π, ζ(3), ζ(5), ζ(7), ζ(9), . . .

are algebraically independent over Q.

This conjecture may be regarded as a mathematical folklore (see, e.g., [7] and
[28]). In this survey, a certain generalization of the problem of algebraic indepen-
dence for the values of the Riemann zeta function at positive integers (zeta values)
is discussed. Namely, we will speak on the object that is extensively studied during
the last decade in connection with problems of not only number theory but also of
combinatorics, algebra, analysis, algebraic geometry, quantum physics, and many
other branches of mathematics. However, there are no printed works in Russian
since nowadays devoted to the subject (mention only the paper [25] in press). By
means of the present publication, we hope to attract attention of Russian mathe-
maticians to problems concerning multiple zeta values.

The author is deeply thankful to the referee for several valuable remarks that
have essentially improved the writings.

2. Multiple zeta values

Series (1) enables the following multidimensional generalization. For positive
integers s1, s2, . . . , sl with s1 > 1, consider the values of the l-tuple zeta function

ζ(s) = ζ(s1, s2, . . . , sl) :=
∑

n1>n2>···>nl>1

1

ns1
1 ns2

2 · · ·nsl
l

; (4)

the corresponding multi-index s = (s1, s2, . . . , sl) will be further regarded as admiss-
able. The quantities (4) are called the multiple zeta values [30] (and abbreviated
MZVs), or the multiple harmonic series [10], or the Euler sums. The sums (4) for
l = 2 rise from Euler [5], who has obtained a family of identities connecting double
and ordinary zeta values (see Corollary from Theorem 1 below). In particular, had
Euler proved the identity

ζ(2, 1) = ζ(3), (5)

which was several times rediscovered after. The quantities (4) are introduced by
Hoffman in [10] and, independently, by Zagier in [30] (with the opposite order of
summation on the right-hand side of (4)); moreover, in [10] and [30], some Q-linear
and Q-polynomial relations are stated as well as a series of conjectures (that has
been partly proved later) on the structure of algebraic relations for the family (4)
is indicated. Hoffman also suggests [10] the alternative definition

ζ̃(s) = ζ̃(s1, s2, . . . , sl) :=
∑

n1>n2>···>nl>1

1

ns1
1 ns2

2 · · ·nsl
l

(6)

of the Euler sums, with non-strict inequalities in summation. Of course, all relations
of series (6) may be rewritten without difficulty for series (4) (see, e.g., [10] and
[25]), although several identities possess a compact form by means of just multiple
zeta values (6) (see relations (38) in Section 7 below).
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For each number (4), define the two characteristics: the weight (or degree) |s| :=
s1 + s2 + · · ·+ sl and the length (or depth) ℓ(s) := l.

Note [31] that the series on the right-hand side of (4) converges absolutely in

the region Re s1 > 1,
∑l

k=1 Re sk > l; moreover, the multiple zeta function ζ(s)
defined in the region by series (4) can be analytically continued to the meromorphic
function on the whole space Cl with possible simple poles at the hyperplanes s1 = 1

and
∑j

k=1 sk = j + 1 − m, where j, 1 < j 6 l, and m > 1 are integer numbers.
The questions of existence of a functional equation for l > 1 and of localization
of non-trivial zeros (the analogue of Riemann’s conjecture) for the function ζ(s),
remain open.

3. Identities: the partial-fraction method

In this section, we will give examples of identities for multiple zeta values that
can be deduced by an elementary analytic method, the partial-fraction method.

Theorem 1 (Hoffman’s relations [10], Theorem 5.1). For any admissible multi-
index s = (s1, s2, . . . , sl), the identity

l∑
k=1

ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl)

=
l∑

k=1
sk>2

sk−2∑
j=0

ζ(s1, . . . , sk−1, sk − j, j + 1, sk+1, . . . , sl) (7)

holds.

Proof. For any k = 1, 2, . . . , l we have

∑
nk>nk+1>···>nl>1

1

nsk+1
k n

sk+1

k+1 · · ·nsl
l

+
∑

nk>m>nk+1>···>nl>1

1

nsk
k mn

sk+1

k+1 · · ·nsl
l

=
∑

nk>m>nk+1>···>nl>1

1

nsk
k mn

sk+1

k+1 · · ·nsl
l

=
∑

nk>nk+1>···>nl>1

nk∑
m=nk+1+1

1

mnsk
k n

sk+1

k+1 · · ·nsl
l

,

hence

ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

=
∑

n1>···>nk>nk+1>···>nl>1

1

ns1
1 · · ·nsk+1

k n
sk+1

k+1 · · ·nsl
l

+
∑

n1>···>nk>m>nk+1>···>nl>1

1

ns1
1 · · ·nsk

k mn
sk+1

k+1 · · ·nsl
l
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=
∑

n1>···>nk>nk+1>···>nl>1

nk∑
m=nk+1+1

1

mns1
1 · · ·nsk

k n
sk+1

k+1 · · ·nsl
l

=
∑

n1>n2>···>nl>1

1

ns1
1 ns2

2 · · ·nsl
l

nk∑
m=nk+1+1

1

m
.

Therefore

l∑
k=1

(
ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

)
=

∑
n1>n2>···>nl>1

1

ns1
1 ns2

2 · · ·nsl
l

n1∑
m=1

1

m

=
∑

m1,m2,...,ml>1

1

msl
1 (m1 +m2)sl−1 · · · (m1 + · · ·+ml)s1

m1+···+ml∑
m=1

1

m

=
∑

m1,m2,...,ml>1

1

Msl
1 M

sl−1

2 · · ·Ms1
l

∑
ml+1>1

(
1

ml+1
− 1

Ml+1

)
, (8)

where we introduce the notation Mk = m1 + m2 + · · · + mk for k = 1, . . . , l + 1
(clearly, Mk = nl+1−k for k = 1, . . . , l). Notice now the following partial-fraction
expansion (in terms of the parameter u):

1

u(u+ v)s
=

1

vsu
−

s−1∑
j=0

1

vj+1(u+ v)s−j
, u, v ∈ R; (9)

for the proof, it is sufficiently to use the fact that a geometric progression is summed
on the right-hand side. Taking u = ml+1, v = Ml, and s = s1 in (9), we obtain

1

ml+1M
s1
l+1

=
1

ml+1(ml+1 +Ml)s1
=

1

Ms1
l ml+1

−
s1−1∑
j=0

1

M j+1
l Ms1−j

l+1

,

hence
1

Ms1
l

(
1

ml+1
− 1

Ml+1

)
=

s1−2∑
j=0

1

M j+1
l Ms1−j

l+1

+
1

ml+1M
s1
l+1

.

Going on equality (8), we find that

l∑
k=1

(
ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

)
=

s1−2∑
j=0

∑
m1,m2,...,ml+1>1

1

Msl
1 M

sl−1

2 · · ·Ms2
l−1M

j+1
l Ms1−j

l+1

+
∑

m1,m2,...,ml+1>1

1

Msl
1 M

sl−1

2 · · ·Ms2
l−1ml+1M

s1
l+1
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=

s1−2∑
j=0

ζ(s1 − j, j + 1, s2, . . . , sl) +
∑

m1,m2,...,ml+1>1

1

Msl
1 M

sl−1

2 · · ·Ms2
l−1mlM

s1
l+1

(10)

(in the last tuple sum we interchange the indices ml and ml+1). Using now iden-
tity (9) with u = mk+1, v = Mk = Mk+1 − mk+1, and s = sl+1−k, we derive
that

1

M
sl+1−k

k mk+1

=

sl+1−k−1∑
j=0

1

M j+1
k M

sl+1−k−j
k+1

+
1

mk+1M
sl+1−k

k+1

, k = 1, 2, . . . , l−1,

therefore∑
m1,m2,...,ml+1>1

1

Msl
1 · · ·Msl+1−k

k mk+1M
sl−k

k+2 · · ·Ms1
l+1

=

sl+1−k−1∑
j=0

∑
m1,m2,...,ml+1>1

1

Msl
1 · · ·Msl+2−k

k−1 M j+1
k M

sl+1−k−j
k+1 M

sl−k

k+2 · · ·Ms1
l+1

+
∑

m1,m2,...,ml+1>1

1

Msl
1 · · ·Msl+2−k

k−1 mk+1M
sl+1−k

k+1 · · ·Ms1
l+1

=

sl+1−k−1∑
j=0

ζ(s1, . . . , sl−k, sl+1−k − j, j + 1, sl+2−k, . . . , sl)

+
∑

m1,m2,...,ml+1>1

1

Msl
1 · · ·Msl+2−k

k−1 mkM
sl+1−k

k+1 · · ·Ms1
l+1

, (11)

k = 1, 2, . . . , l − 1.

Applying consequently, in inverse order (i.e., starting from k = l− 1 and ending on
k = 1), identities (11) for the tuple sum on the right-hand side of equality (10), we
obtain

l∑
k=1

(
ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

)
=

s1−2∑
j=0

ζ(s1 − j, j + 1, s2, . . . , sl)

+
l−1∑
k=1

sl+1−k−1∑
j=0

ζ(s1, . . . , sl−k, sl+1−k − j, j + 1, sl+2−k, . . . , sl)

+
∑

m1,m2,...,ml+1>1

1

m1M
sl
2 M

sl−1

3 · · ·Ms1
l+1

=
l∑

k=1

sk−2∑
j=0

ζ(s1, . . . , sk−1, sk − j, j + 1, sk+1, . . . , sl)

+
l∑

k=1

ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl). (12)
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Realizing all necessary cancellations of the left-hand and right-hand sides of equal-
ity (12), we finally arrive at the desired identity (7).

If l = 1, the statement of Theorem 1 can be written in the following form.

Corollary (Euler’s theorem). For any integer s > 3, the identity

ζ(s) =
s−2∑
j=1

ζ(s− j, j) (13)

holds.

Note also that, in the case s = 3, identity (13) becomes nothing else but rela-
tion (5).

In the work [13], the following result is also proved by means of the partial-
fraction method.

Theorem 2 (Cyclic sum theorem). For any admissible multi-index s = (s1, s2, . . . , sl),
the identity

l∑
k=1

ζ(sk + 1, sk+1, . . . , sl, s1, . . . , sk−1)

=
l∑

k=1
sk>2

sk−2∑
j=0

ζ(sk − j, sk+1, . . . , sl, s1, . . . , sk−1, j + 1)

holds.

Theorem 2 directly yields the result that the sum of all multiple zeta values of
fixed length and fixed weight does not depend on the length; this statement, as well
as Theorem 1, generalizes the above mentioned Euler’s theorem.

Theorem 3 (Sum theorem). For any integers s > 1 and l > 1, the identity∑
s1>1,s2>1,...,sl>1
s1+s2+···+sl=s

ζ(s1, s2, . . . , sl) = ζ(s)

holds.

Theorem 1 and 3 are particular cases of Ohno’s relations [21], which will be
discussed in Section 12 below.

4. Algebra of multiple zeta values

This section is based on the works [11] and [30]. To describe all known algebraic
relations (i.e., numerical identities) over Q for the quantities (4), it becomes useful
to represent ζ as a linear map of a certain polynomial algebra into the field of
real numbers. Consider coding of multi-indices s by words (i.e., by monomials in
non-commutative variables) over the alphabet X = {x0, x1} by the rule

s 7→ xs = xs1−1
0 x1x

s2−1
0 x1 · · ·xsl−1

0 x1.
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Set

ζ(xs) := ζ(s) (14)

for all admissible (starting with x0 and ending on x1) words; then the weight (or
degree) |xs| := |s| coincides with the total degree of the monomial xs, while the
length ℓ(xs) := ℓ(s) expresses the degree with respect to the variable x1.

Let Q⟨X⟩ = Q⟨x0, x1⟩ be the graded by degree Q-algebra (where the degree
of each variable x0 and x1 is agreed to be 1) of polynomials in the two non-
commutative variables; we identify the algebra Q⟨X⟩ with the graded Q-vector
space H spanned over monomials in the variables x0 and x1. Define as well the
graded Q-vector spaces H1 = Q1⊕Hx1 and H0 = Q1⊕x0Hx1, where 1 denotes the
unit (the empty word of weight 0 and length 0) of the algebra Q⟨X⟩. Then H1 may
be regarded as the subalgebra of Q⟨X⟩ generated by the words ys = xs−1

0 x1, while
H0 is the Q-vector space spanned over all admissible words. Now, we may view
the function ζ as the Q-linear map ζ : H0 → R defined by the relations ζ(1) = 1
and (14).

Define the multiplications ⊔⊔ (the shuffle product) on H and ∗ (the harmonic or
stuffle product) on H1 by the rules

1⊔⊔w = w⊔⊔1 = w, 1 ∗ w = w ∗ 1 = w (15)

for any word w, and

xju⊔⊔xkv = xj(u⊔⊔xkv) + xk(xju⊔⊔ v), (16)

yju ∗ ykv = yj(u ∗ ykv) + yk(yju ∗ v) + yj+k(u ∗ v) (17)

for any words u, v, any letters xj , xk, and any generators yj , yk of the subalge-
bra H1, respectively, distributing then rules (15)–(17) on the whole algebra H and
the whole subalgebra H1 by linearity. Sometimes it becomes useful to spread the
stuffle product on the whole algebra H, formally adding the rule

xj
0 ∗ w = w ∗ xj

0 = wxj
0 (18)

for any word w and integer j > 1, to rule (17). Note that inductive arguments
allow to prove commutativity and associativity of each of the multiplications (see
Section 8 below for this); the corresponding algebras H⊔⊔ := (H,⊔⊔), H1

∗ := (H1, ∗)
(and also H∗ := (H, ∗)) are examples of so-called Hopf algebras.

The following two statements motivate consideration of the introduced multipli-
cations ⊔⊔ and ∗; their proofs can be found in [11], [13], and [28].

Theorem 4. The map ζ is a homomorphism of the shuffle algebra H0
⊔⊔ := (H0,⊔⊔)

into R, i.e.,

ζ(w1 ⊔⊔w2) = ζ(w1)ζ(w2) for all w1, w2 ∈ H0. (19)
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Theorem 5. The map ζ is a homomorphism of the stuffle algebra H0
∗ := (H0, ∗)

into R, i.e.,
ζ(w1 ∗ w2) = ζ(w1)ζ(w2) for all w1, w2 ∈ H0. (20)

Later we will give detailed proofs of the two theorems using the differential-
difference origin of the multiplications ⊔⊔ and ∗ in suitable functional models of
the algebras H⊔⊔ and H0

∗. Proving Theorem 4 (see Section 5), we follow a scheme
of the work [27], while our proof of Theorem 5 (in Section 9) is new.

One more family of identities is given by the following statement that will be
deduced in Section 11 from Theorem 1.

Theorem 6. The map ζ satisfies the relations

ζ(x1 ⊔⊔w − x1 ∗ w) = 0 for all w ∈ H0 (21)

(in particular, the polynomials x1 ⊔⊔w − x1 ∗ w belong to H0).

All known to the moment (proved and experimentally derived) identities for
the multiple zeta values follow from identities (19)–(21). Therefore the following
conjecture looks rather truthful.

Conjecture 2 [11], [18], [27]. All algebraic relations over Q of multiple zeta values
are generated by identities (19)–(21); equivalently,

ker ζ = {u⊔⊔ v − u ∗ v : u ∈ H1, v ∈ H0}.

5. Shuffle algebra of generalized polylogarithms

In order to prove shuffle relations (19) for multiple zeta values, let us define the
generalized polylogaithms

Lis(z) :=
∑

n1>n2>···>nl>1

zn1

ns1
1 ns2

2 · · ·nsl
l

, |z| < 1, (22)

for any collection of positive integers s1, s2, . . . , sl. By definition,

Lis(1) = ζ(s), s ∈ Zl, s1 > 2, s2 > 1, . . . , sl > 1. (23)

Taking, as before for multiple zeta values,

Lixs(z) := Lis(z), Li1(z) := 1, (24)

let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H1

(not H, since multi-indices are coded by words in H1).

Lemma 1. Let w ∈ H1 be an arbitrary non-empty word and xj the first letter in
its record (that is w = xju for some word u ∈ H1). Then

d

dz
Liw(z) =

d

dz
Lixju(z) = ωj(z) Liu(z), (25)
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where

ωj(z) = ωxj (z) :=


1

z
if xj = x0,

1

1− z
if xj = x1.

(26)

Proof. Assuming w = xju = xs for some multi-index s, we have

d

dz
Liw(z) =

d

dz
Lis(z) =

d

dz

∑
n1>n2>···>nl>1

zn1

ns1
1 ns2

2 · · ·nsl
l

,

=
∑

n1>n2>···>nl>1

zn1−1

ns1−1
1 ns2

2 · · ·nsl
l

.

Therefore, in the case s1 > 1 (corresponding to the letter xj = x0), we obtain

d

dz
Lix0u(z) =

1

z

∑
n1>n2>···>nl>1

zn1

ns1−1
1 ns2

2 · · ·nsl
l

=
1

z
Lis1−1,s2,...,sl(z) =

1

z
Liu(z)

and, in the case s1 = 1 (corresponding to the letter xj = x1), we get

d

dz
Lix1u(z) =

∑
n1>n2>···>nl>1

zn1−1

ns2
2 · · ·nsl

l

=
∑

n2>···>nl>1

1

ns2
2 · · ·nsl

l

∞∑
n1=n2+1

zn1−1

=
1

1− z

∑
n2>···>nl>1

zn2

ns2
2 · · ·nsl

l

=
1

1− z
Lis2,...,sl(z) =

1

1− z
Liu(z),

and the result follows.

Lemma 1 motivates another definition of the generalized polylogarithms, now
defined for all elements of the algebra H. As before, it is sufficient to give it for
words w ∈ H only, distributing then over all algebra by linearity; set Li1(z) = 1
and

Liw(z) =


logs z

s!
if w = xs

0 for some s > 1,∫ z

0

ωj(z) Liu(z) dz if w = xju contains the letter x1.

(27)

Evidently, Lemma 1 remains true for this extended version (27) of the polyloga-
rithms (the fact yields coincidence of the newly-defined polylogarithms with the
“old” ones (24) for words w in H1); in addition,

lim
z→0+0

Liw(z) = 0 if the word w contains the letter x1.

An easy verification shows that the generalized polylogarithms are continuous real-
valued function in the interval (0, 1).
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Lemma 2. The map w 7→ Liw(z) is a homomorphism of the algebra H⊔⊔ into
C((0, 1);R).
Proof. We have to verify the equalities

Liw1 ⊔⊔w2(z) = Liw1(z) Liw2(z) for all w1, w2 ∈ H; (28)

it is sufficient to do this job for words w1, w2 ∈ H. We will prove equality (28) by
induction on the quantity |w1|+ |w2|. If w1 = 1 or w2 = 1, relation (28) becomes
tautological by (15). Otherwise, w1 = xju and w2 = xkv, hence by Lemma 1 and
the inductive hypothesis we have

d

dz

(
Liw1(z) Liw2(z)

)
=

d

dz

(
Lixju(z) Lixkv(z)

)
=

d

dz
Lixju(z) · Lixkv(z) + Lixju(z) ·

d

dz
Lixkv(z)

= ωj(z) Liu(z) Lixkv(z) + ωk(z) Lixju(z) Liv(z)

= ωj(z) Liu⊔⊔xkv(z) + ωk(z) Lixju⊔⊔ v(z)

=
d

dz

(
Lixj(u⊔⊔xkv)(z) + Lixk(xju⊔⊔ v)(z)

)
=

d

dz
Lixju⊔⊔xkv(z)

=
d

dz
Liw1 ⊔⊔w2(z).

Thus
Liw1(z) Liw2(z) = Liw1 ⊔⊔w2(z) + C, (29)

and letting z → 0 + 0 if at least one of the words w1, w2 contains letter x1, or
substituting z = 1 if the records of w1, w2 consist of letter x0 only, gives the
relation C = 0. Therefore, equality (29) becomes the required relation (28), and
lemma follows.

Proof of Theorem 4. Theorem 4 follows from Lemma 2 and relations (23).

Explicit computation of the monodromy group for the system of differential
equations (25) allows to Minh, Petitot, and van der Hoeven to prove that the
homomorphism w 7→ Liw(z) of the shuffle algebra H⊔⊔ over C is bijective, i.e., all
C-algebraic relations for generalized polylogarithms are originated by shuffle rela-
tions (28) only; in particular, generalized polylogarithms are linearly independent
over C. A much simpler proof of the linear independence of functions (22), as a

consequence of elegant identities for the functions, is due to Ulanskĭi [25]; the same
statement also follows from Sorokin’s result [24].

6. Duality theorem

By Lemma 1, the following integral representation is valid for the word w =
xε1xε2 · · ·xεk ∈ H1:

Liw(z) =

∫ z

0

ωε1(z1) dz1

∫ z1

0

ωε2(z2) dz2· · ·
∫ zk−1

0

ωεk(zk) dzk

=

∫
· · ·

∫
z>z1>z2>···>zk−1>zk>0

ωε1(z1)ωε2(z2) · · ·ωεk(zk) dz1 dz2 · · ·dzk
(30)
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if 0 < z < 1. When xε1 ̸= x1, i.e. w ∈ H0, the integral in (30) converges in the
region 0 < z 6 1, hence, in accordance with (23), we reduce representation [30] for
the multiple zeta values

ζ(w) =

∫
· · ·

∫
1>z1>···>zk>0

ωε1(z1) · · ·ωεk(zk) dz1 · · ·dzk (31)

in a form of Chen’s iterated integrals. The following result is evident application of
the integral representation (31).

Denote by τ the anti-automorphism of the algebra H = Q⟨x0, x1⟩, interchanging
x0 and x1; for example, τ(x2

0x1x0x1) = x0x1x0x
2
1. Clearly, τ is an involution

preserving weight. It can be easily seen that τ is also the automorphism of the
subalgebra H0.

Theorem 7 (Duality theorem [30]). For any word w ∈ H0, the relation

ζ(w) = ζ(τw)

holds.

Proof. To prove the theorem, it is sufficiently to do the change of variable z′1 = 1−zk,
z′2 = 1 − zk−1, . . . , z

′
k = 1 − z1, and apply relations ω0(z) = ω1(1 − z) followed

from (26).

As the simplest consequence of Theorem 7, notice (again) identity (5), which
follows for the word w = x2

0x1, as well as the general identity

ζ(n+ 2) = ζ(2, 1, . . . , 1︸ ︷︷ ︸
n times

), n = 1, 2, . . . , (32)

for the words w = xn+1
0 x1.

7. Identities: the generating-function method

Another application of differential equations for generalized polylogarithms, deduced
in Lemma 1, is the generating-function method.

Let us first remark that, for an admissible multi-index s = (s1, . . . , sl), the
corresponding set of periodic polylogarithms

Li{s}n
(z), where {s}n = ( s, s, . . . , s︸ ︷︷ ︸

n times

), n = 0, 1, 2, . . .

(see, e.g., [4], [28]), possesses the generating function

Ls(z, t) :=
∞∑

n=0

Li{s}n
(z)tn|s|,

which satisfies an ordinary differential equation with respect to the variable z. For
instance, if ℓ(s) = 1 that is s = (s), the corresponding differential equation, by
Lemma 1, has the form((

(1− z)
d

dz

)(
z
d

dz

)s−1

− ts
)
Ls(z, t) = 0,

and its solution may be written explicitly by means of a generalized hypergeometric
series (see [3], [4], [28]).
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Lemma 3 ([4], Theorem 12). The following equality holds:

L(3,1)(z, t) = F
(
1
2 (1 + i)t,−1

2 (1 + i)t; 1; z
)
· F

(
1
2 (1− i)t,−1

2 (1− i)t; 1; z
)
, (33)

where F (a, b; c; z) denotes the Gauß’s hypergeometric function.

Proof. Routine verification (with a help of Lemma 1 for the left-hand side) shows
that the both sides of the required equality are annihilated by action of the differ-
ential operator (

(1− z)
d

dz

)2(
z
d

dz

)2

− t4;

in addition, the first terms in z-expansions of the both sides in (33) coincide:

1 +
t4

8
z2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · · .

Thus the statement of the lemma follows.

Theorem 8 [4], [28]. For any integer n > 1, the identity

ζ({3, 1}n) =
2π4n

(4n+ 2)!
(34)

holds.

Proof. By the Gauß summation formula [29], Ch. 14,

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa
, (35)

substituting z = 1 into equality (33) yields
∞∑

n=0

ζ({3, 1}n)t4n = L(3,1)(1, t) =
sin 1

2 (1 + i)πt
1
2 (1 + i)πt

·
sin 1

2 (1− i)πt
1
2 (1− i)πt

=
1

2π2t2
·
(
e(1+i)πt/2 − e−(1+i)πt/2

)(
e(1−i)πt/2 − e−(1−i)πt/2

)
=

1

2π2t2
·
(
eπt + e−πt − eiπt − e−iπt

)
=

1

2π2t2

∞∑
m=0

(1 + (−1)m − im − (−i)m)
(πt)m

m!
=

∞∑
n=0

2π4nt4n

(4n+ 2)!
.

Comparison of the coefficients in the same powers of t gives the desired identity.

The statement of Theorem 8 was conjectured in [30]. Identity (34) is not the
unique example of application of generating functions. We present more identities
from [3], similar to (34), for which the above method is also effective:

ζ({2}n) =
2(2π)2n

(2n+ 1)!

(
1

2

)2n+1

, ζ({4}n) =
4(2π)4n

(4n+ 2)!

(
1

2

)2n+1

,

ζ({6}n) =
6(2π)6n

(6n+ 3)!
, ζ({8}n) =

8(2π)8n

(8n+ 4)!

((
1 +

1√
2

)4n+2

+

(
1− 1√

2

)4n+2)
,

ζ({10}n) =
10(2π)10n

(10n+ 5)!

(
1 +

(
1 +

√
5

2

)10n+5

+

(
1−

√
5

2

)10n+5)
,

(36)
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where n = 1, 2, . . . . Identities

ζ(m+ 2, {1}n) = ζ(n+ 2, {1}m), m, n = 0, 1, 2, . . . ,

may be derived by the generating-function method [10] as well as by application of
the stated Theorem 7.

An example of other-type generating functions relates to generalization of Apéry’s
identity [1]

ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) ;

namely, the following expansions are valid [16], [2]:

∞∑
n=0

ζ(2n+ 3)t2n =
∞∑
k=1

1

k3(1− t2/k2)

=
∞∑
k=1

(−1)k−1

k3
(
2k
k

) (
1

2
+

2

1− t2/k2

) k−1∏
l=1

(
1− t2

l2

)
,

∞∑
n=0

ζ(4n+ 3)t4n =
∞∑
k=1

1

k3(1− t4/k4)
=

5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) 1

1− t4/k4

k−1∏
l=1

1 + 4t4/l4

1− t4/l4
.

(37)
Their proofs as well as proofs of several other identities is based on transformation
and summation formulae of generalized hypergeometric functions, similar to appli-
cation of formula (35) in deducing Theorem 8. Identities (37) are extraordinary
useful in fast computation of the Riemann zeta function at odd integers.

Let us also remark the relations

ζ̃({2}n, 1) = 2ζ(2n+ 1), n = 1, 2, . . . , (38)

that are obtained by consequent application of the results in [26] (or [33]) and [32].
Equalities (38) also generalize Euler’s identity (5) and are deeply related to one way
of showing Apéry’s theorem [1] and Rivoal’s theorem [22], mentioned in Section 1.
However, deducing relations (38) from Theorems 4–6 for arbitrary integer n is not
yet known.

8. Quasi-shuffle products

Construction, proposed by Hoffman [12], allows to consider each of the algebras
H⊔⊔ and H1

∗ as a particular case of some general algebraic structure. Description of
the structure is the subject of the section.

Consider the non-commutative, graded by degree, polynomial algebra A = K⟨A⟩
over the field K ⊂ C; here A denotes a locally finite set of generators (i.e., the set
of generators of fixed positive degree is finite). As usual, elements of the set A are
said to be letters and monomials in these letters are words. To any word w, assign
its length (the number of letters in the record) ℓ(w) and its weight (the sum of
degrees of the letters) |w|. The unique word of length 0 and weight 0 is the empty
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word, which is denoted by 1; this word is the unit of the algebra A. The neutral
(zero) element of the algebra A is denoted by 0.

Now, define the product ◦, additively distributing it over the whole algebra A,
by the following rules:

1 ◦ w = w ◦ 1 = w (39)

for any word w, and

aju ◦ akv = aj(u ◦ akv) + ak(aju ◦ v) + [aj , ak](u ◦ v) (40)

for any words u, v and letters aj , ak ∈ A, where the functional

[ · , · ] : Ā× Ā → Ā (41)

(Ā := A ∪ {0}) satisfies the properties

(S0) [a,0] = 0 for any a ∈ Ā;
(S1) [[aj , ak], al] = [aj , [ak, al]] for any aj , ak, al ∈ Ā;
(S2) either [aj , ak] = 0 or |[ak, aj ]| = |aj |+ |ak| for any aj , ak ∈ A.

Then A◦ := (A, ◦) becomes an associative graded K-algebra and, if the additional
property

(S3) [aj , ak] = [ak, aj ] for any aj , ak ∈ Ā

holds, then it is the commutative K-algebra [12], Theorem 2.1.
If [aj , ak] = 0 for all letters aj , ak ∈ A, then (A, ◦) is the standard shuffle algebra;

in particular case A = {x0, x1}, we obtain the shuffle algebra A◦ = H⊔⊔ of the
multiple zeta values (or of the polylogarithms). The stuffle algebra H1

∗ corresponds
to the choice of the generators A = {yj}∞j=1 and the functional

[yj , yk] = yj+k for integers j > 1 and k > 1.

On the algebra A with the give functional (41), define the dual product ◦̄ by the
rules

1 ◦̄w = w ◦̄1 = w,

uaj ◦̄ vak = (u ◦̄ vak)aj + (uaj ◦̄ v)ak + (u ◦̄ v)[aj , ak]

in place of (39) and (40), respectively. Then A◦̄ := (A, ◦̄) is a (commutative, if
property (S3) holds) graded K-algebra as well.

Theorem 9. The algebras A◦ and A◦̄ coincide.

Proof. It is sufficient to prove the relation

w1 ◦ w2 = w1 ◦̄w2 (42)

for all words w1, w2 ∈ K⟨A⟩. We will proceed the proof by induction on the quantity
ℓ(w1) + ℓ(w2). If ℓ(w1) = 0 or ℓ(w2) = 0, then relation (42) becomes the evident
identity. If ℓ(w1) = ℓ(w2) = 1, i.e. w1 = a1 and w2 = a2 are letters, then

a1 ◦ a2 = a1a2 + a2a1 + [a1, a2] = a1 ◦̄ a2.
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If ℓ(w1) > 1 and ℓ(w2) = 1, then writing w1 = a1ua2 and w2 = a3 ∈ A and applying
the inductive hypothesis we deduce that

a1ua2 ◦ a3 = a1(ua2 ◦ a3) + a3a1ua2 + [a1, a3]ua2

= a1(ua2 ◦̄ a3) + a3a1ua2 + [a1, a3]ua2

= a1((u ◦̄ a3)a2 + ua2a3 + u[a2, a3]) + a3a1ua2 + [a1, a3]ua2

= a1((u ◦ a3)a2 + ua2a3 + u[a2, a3]) + a3a1ua2 + [a1, a3]ua2

= (a1(u ◦ a3) + a3a1u+ [a1, a3]u)a2 + a1ua2a3 + a1u[a2, a3]

= (a1u ◦ a3)a2 + a1ua2a3 + a1u[a2, a3]

= (a1u ◦̄ a3)a2 + a1ua2a3 + a1u[a2, a3]

= a1ua2 ◦̄ a3.

In the same vein (but with more cumbersome computations), we proceed in the
remaining case ℓ(w1) > 1 and ℓ(w2) > 1. Namely, writing w1 = a1ua2, w2 = a3va4
and applying the inductive hypothesis we obtain

a1ua2 ◦ a3va4 = a1(ua2 ◦ a3va4) + a3(a1ua2 ◦ va4) + [a1, a3](ua2 ◦ va4)
= a1(ua2 ◦̄ a3va4) + a3(a1ua2 ◦̄ va4) + [a1, a3](ua2 ◦̄ va4)
= a1((u ◦̄ a3va4)a2 + (ua2 ◦̄ a3v)a4 + (u ◦̄ a3v)[a2, a4])

+ a3((a1u ◦̄ va4)a2 + (a1ua2 ◦̄ v)a4 + (a1u ◦̄ v)[a2, a4])
+ [a1, a3]((u ◦̄ va4)a2 + (ua2 ◦̄ v)a4 + (u ◦̄ v)[a2, a4])

= a1((u ◦ a3va4)a2 + (ua2 ◦ a3v)a4 + (u ◦ a3v)[a2, a4])
+ a3((a1u ◦ va4)a2 + (a1ua2 ◦ v)a4 + (a1u ◦ v)[a2, a4])
+ [a1, a3]((u ◦ va4)a2 + (ua2 ◦ v)a4 + (u ◦ v)[a2, a4])

= (a1(u ◦ a3va4) + a3(a1u ◦ va4) + [a1, a3](u ◦ va4))a2
+ (a1(ua2 ◦ a3v) + a3(a1ua2 ◦ v) + [a1, a3](ua2 ◦ v))a4
+ (a1(u ◦ a3v) + a3(a1u ◦ v) + [a1, a3](u ◦ v))[a2, a4]

= (a1u ◦ a3va4)a2 + (a1ua2 ◦ a3v)a4 + (a1u ◦ a3v)[a2, a4]
= (a1u ◦̄ a3va4)a2 + (a1ua2 ◦̄ a3v)a4 + (a1u ◦̄ a3v)[a2, a4]
= a1ua2 ◦̄ a3va4.

This concludes the proof.

Remark. If the graded algebras possess property (S3), the above proof may be
essentially simplified. Nevertheless, we find the fact of coincidence of the alge-
bras A◦ and A◦̄ in the most general settings, i.e. when the functional (41) satisfies
properties (S0)–(S2), to be rather important.

In conclusion of the section, we will proof an auxiliary statement.

Lemma 4. For any letter a ∈ A and any words u, v ∈ A, the following identity
holds:

a ◦ uv − (a ◦ u)v = u(a ◦ v − av). (43)
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Proof. We will prove the statement by induction on the number of letters in the
word u. If the word u is empty, then identity (43) is evident. Otherwise, write
the word u as u = a1u1, where a1 ∈ A and the word u1 consists of less number of
letters, hence the identity

a ◦ u1v − (a ◦ u1)v = u1(a ◦ v − av)

holds. Then

a ◦ uv − (a ◦ u)v = a ◦ a1u1v − (a ◦ a1u1)v

= aa1u1v + a1(a ◦ u1v) + [a, a1]u1v

− (aa1u1 + a1(a ◦ u1) + [a, a1]u1)v

= a1(a ◦ u1v − (a ◦ u1)v) = a1u1(a ◦ v − av)

= u(a ◦ v − av),

which is the desired result.

9. Functional model of stuffle algebra

The functional model of the stuffle algebra H∗ cannot be described in the full
analogy with the polylogarithmic model of the shuffle algebra H⊔⊔, since rule (17)
has no differential interpretation as (16). Therefore we shall use a difference inter-
pretation of rule (17), namely, the (simplest) difference operator

Df(t) = f(t− 1)− f(t).

It can be easily verified that

D
(
f1(t)f2(t)

)
= Df1(t) · f2(t) + f1(t) ·Df2(t) +Df1(t) ·Df2(t), (44)

and that inverse mapping

Ig(t) =
∞∑

n=1

g(t+ n),

hence D(Ig(t)) = g(t), is defined up to an additive constant provided some addi-
tional restrictions on the function g(t) as t → +∞, for instance g(t) = O(t−2).

Remark. By [6], § 3.1, the operator D is related to the differential operator d/dt as
follows:

D = e−d/dt − 1 =
∞∑

n=1

(−1)n

n!

dn

dtn
.

The above indicated equality is justified by formal application of the Taylor expan-
sion:

f(t− 1) = f(t) +
∞∑

n=1

(−1)n

n!

dn

dtn
f(t);

however the formula is valid for any entire function. Exponentiating derivations
(in word algebras), in connection with generalization of Theorem 1, is discussed in
Section 12 below.
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A natural analogy with Lemmas 1 and 2, by (17) and (44) provides the existence
of functions ωj(t) satisfying the properties

ωj(t)ωk(t) = ωj+k(t) for integers j > 1 and k > 1.

The simplest choice is given by the formulae

ωj(t) =
1

tj
, j = 1, 2, . . . ,

and yields us to the functions

Ris(t) = Ris1,...,sl−1,sl(t) := I

(
1

tsl
Ris1,...,sl−1

(t)

)
, Ri1(t) := 1,

defined by induction on the length of multi-index. Thanks to the definition, we
have

DRiuyj (t) =
1

tj
Riu(t) (45)

that, in some sense, is a discrete analogue of formula (25).

Lemma 5. The following identity holds:

Ris(t) =
∑

n1>···>nl−1>nl>1

1

(t+ n1)s1 · · · (t+ nl−1)sl−1(t+ nl)sl
; (46)

in particular,

Ris(0) = ζ(s), s ∈ Zl, s1 > 2, s2 > 1, . . . , sl > 1, (47)

lim
t→+∞

Ris(t) = 0, s ∈ Zl, s1 > 2, s2 > 1, . . . , sl > 1. (48)

Proof. By definition, we find that

Ris(t) = I

(
1

tsl
Ris1,...,sl−1

(t)

)
= I

(
1

tsl

∑
n1>···>nl−1>1

1

(t+ n1)s1 · · · (t+ nl−1)sl−1

)

=
∞∑

n=1

1

(t+ n)sl

∑
n1>···>nl−1>1

1

(t+ n1 + n)s1 · · · (t+ nl−1 + n)sl−1

=
∑

n′
1>···>n′

l−1>n>1

1

(t+ n′
1)

s1 · · · (t+ n′
l−1)

sl−1(t+ n)sl
,

and this implies the required formula (46).

Define now the multiplication ∗̄ on the algebra H1 (and, in particular, on the
subalgebra H0) by the rules

1 ∗̄w = w ∗̄1 = w, (49)

uyj ∗̄ vyk = (u ∗̄ vyk)yj + (uyj ∗̄ v)yk + (u ∗̄ v)yj+k

instead of (15) and (17).
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Lemma 6. The map w 7→ Riw(z) is a homomorphism of the algebra (H0, ∗̄) into
C([0,+∞);R).

Proof. It is sufficient to verify the relations

Riw1 ∗̄w2(z) = Riw1(z)Riw2(z) for all w1, w2 ∈ H0; (50)

without loss of generality we may assume that w1, w2 are polynomials of the alge-
bra H0. We will prove relation (50) by induction on the quantity ℓ(w1) + ℓ(w2); if
w1 = 1 or w2 = 1, then validity of (50) is evident due to (49). Otherwise, write
w1 = uyj , w2 = vyk and apply formulae (44), (45) and the inductive hypothesis:

D
(
Riw1(t)Riw2(t)

)
= D

(
Riuyj (t)Rivyk

(t)
)

= DRiuyj (t) · Rivyk
(t) + Riuyj (t) ·DRivyk

(t)

+DRiuyj (t) ·DRivyk
(t)

=
1

tj
Riu(t)Rivyk

(t) +
1

tk
Riuyj (t)Riv(t) +

1

tj+k
Riu(t)Riv(t)

=
1

tj
Riu ∗̄ vyk

(t) +
1

tk
Riuyj ∗̄ v(t) +

1

tj+k
Riu ∗̄ v(t)

= D
(
Ri(u ∗̄ vyk)yj

(t) + Ri(uyj ∗̄ v)yk
(t) + Ri(u ∗̄ v)yj+k

(t)
)

= DRiuyj ∗̄ vyk
(t)

= DRiw1 ∗̄w2(t).

Therefore
Riw1(t)Riw2(t) = Riw1 ∗̄w2(t) + C (51)

and letting t tend to +∞, by (48) we obtain C = 0. Thus, relation (51) becomes
the required equality (50), and the lemma follows.

Proof of Theorem 5. By (47), Theorem 5 follows from Lemma 6 and Theorem 9.

10. Hoffman’s homomorphism for stuffle algebra

Another way to prove Theorem 5 (and Lemma 6 as well) is due to Hoffman’s
homomorphism ϕ : H1 → Q[[t1, t2, . . . ]], where Q[[t1, t2, . . . ]] is the Q-algebra of
formal power series in the countable set of (commuting) variables t1, t2, . . . (see [11]
and [13]). Namely, the Q-linear map ϕ is defined by setting ϕ(1) := 1 and

ϕ(ys1ys2 · · · ysl) :=
∑

n1>n2>···>nl>1

ts1n1
ts2n2

· · · tslnl
, s ∈ Zl, s1 > 1, . . . , sl > 1.

The image of the homomorphism (actually, the monomorphism) ϕ is the algebra
QSym of quasi-symmetric functions. A formal power series (of bounded degree) in
t1, t2, . . . is called here a quasi-symmetric function if the coefficients of ts1n1

ts2n2
· · · tslnl

and ts1n′
1
ts2n′

2
· · · tsln′

l
are the same whenever n1 > n2 > · · · > nl and n′

1 > n′
2 > · · · > n′

l

(our definition slightly differs from the corresponding version of [13] but leads to the
same algebra QSym of quasi-symmetric functions). By the above means the homo-
morphism w 7→ Riw(t) in Lemma 6 is defined as restriction of the homomorphism ϕ
on H0 by setting tn = 1/(t+ n), n = 1, 2, . . . .
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Another approach to showing the stuffle relations for multiple zeta values was
recently proposed by Cartier (see [28]). Slightly modifying the original scheme of
Cartier, we will expose main ideas of the approach for proving Euler’s identity

ζ(s1)ζ(s2) = ζ(s1 + s2) + ζ(s1, s2) + ζ(s2, s1), s1 > 2, s2 > 2, (52)

as an example. In order to do this, we require the integral representation

ζ(s) =

∫
· · ·

∫
[0,1]|s|

l−1∏
j=1

t1t2 · · · ts1+···+sj

1− t1t2 · · · ts1+···+sj

·
dt1 dt2 · · · dt|s|

1− t1t2 · · · ts1+s2+···+sl

, l = ℓ(s), (53)

for admissible multi-indices s, which differs from that in (31). This representation
is kindly pointed out to us by Nesterenko; it may be proved by straightforward
integrating the series

1

1− t
=

∞∑
n=0

tn.

Substituting u = t1 · · · ts1 , v = ts1+1 · · · ts2 in the elementary identity

1

(1− u)(1− v)
=

1

1− uv
+

u

(1− u)(1− uv)
+

v

(1− v)(1− uv)

and integrating over the hypercube [0, 1]s1+s2 in accordance with (53), we arrive at
identity (52).

11. Derivations

As in Section 8, consider the graded non-commutative polynomial algebra A = K⟨A⟩
over the field K of characteristic 0 with the locally finite set of generators A. By a
derivation of the algebra A we mean a linear map δ : A → A (of the graded K-vector
spaces) that satisfies the Leibniz rule

δ(uv) = δ(u)v + uδ(v) for all u, v ∈ A. (54)

The commutator of two derivations [δ1, δ2] := δ1δ2 − δ2δ1 is a derivation, hence
the set of all derivations of the algebra A forms the Lie algebra Der(A) (naturally
graded by degree).

It can be easily seen that, for defining a derivation δ ∈ Der(A), it is sufficient to
give its image on the generators A and distribute then over the whole algebra by
linearity and in accordance with rule (54).

The nest assertion gives examples of derivations of A, when the algebra possesses
an additive multiplication ◦ with the properties (39) and (40).

Theorem 10. For any letter a ∈ A, the map

δa : w 7→ aw − a ◦ w (55)
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is a derivation.

Proof. Linearity of the map δa is clear. By Lemma 4, for any words u, v ∈ A we
have

δa(uv) = auv − a ◦ uv = auv − (a ◦ u)v − u(a ◦ v − av)

= (δau)v + u(δav),

thus (55) is actually a derivation.

Theorem 10 implies that the maps δ⊔⊔ : H → H and δ∗ : H
1 → H1, defined by the

formulae

δ⊔⊔ : w 7→ x1w − x1 ⊔⊔w, δ∗ : w 7→ y1w − y1 ∗ w = x1w − x1 ∗ w, (56)

are derivations; thanks to rule (18), the map δ∗ is a derivation on the whole alge-
bra H. We mention the action of derivations (56), obtained in accordance with
(15)–(18), on the generators of the algebra:

δ⊔⊔x0 = −x0x1, δ⊔⊔x1 = −x2
1, δ∗x0 = 0, δ∗x1 = −x2

1 − x0x1. (57)

For any derivation δ of the algebra H (or of the subalgebra H0), define the dual
derivation δ = τδτ , where τ is the anti-automorphism of the algebra H (and H0) in
Section 6. A derivation δ is said to be symmetric if δ = δ, and anti-symmetric if
δ = −δ. Since τx0 = x1, an (anti-)symmetric derivation δ is uniquely determined
by its value on one of the generators x0 or x1, while an arbitrary derivation requires
its values on the both generators.

Define now the derivation D of the algebra H by setting Dx0 = 0, Dx1 = x0x1

(i.e., Dys = ys+1 for the generators ys of the algebra H1) and write the statement
of Theorem 1 in the following form.

Theorem 11 (Derivation theorem [13], Theorem 2.1). For any word w ∈ H0, the
identity

ζ(Dw) = ζ(Dw) (58)

holds.

Proof. Expressing a word w ∈ H0 as w = ys1ys2 · · · ysl (with s1 > 1), note that the
left-hand side of equality (7) corresponds to the element

Dw = D(ys1ys2 · · · ysl) = ys1+1ys2 · · · ysl+ys1ys2+1ys3 · · · ysl+· · ·+ys1 · · · ysl−1
ysl+1

(59)
of the algebra H0. On the other hand,

Dw = τD
(
x0x

sl−1
1 x0x

sl−1−1
1 · · ·x0x

s2−1
1 x0x

s1−1
1

)
= τ

l∑
k=1
sk>2

sk−2∑
j=0

x0x
sl−1
1 · · ·x0x

sk+1−1
1 x0x

j
1x0x

sk−j−1
1 x0x

sk−1−1
1 · · ·x0x

s1−1
1

=
l∑

k=1
sk>2

sk−2∑
j=0

xs1−1
0 x1 · · ·x

sk−1−1
0 x1x

sk−j−1
0 x1x

j
0x1x

sk+1−1
0 x1 · · ·xsl−1

0 x1

(60)
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that corresponds to the right-hand side in (7). Applying now the map ζ to the both
sides of obtained equalities (59) and (60), by Theorem 1 we deduce the required
identity (58).

Remark. The condition w ∈ H0 in Theorem 11 cannot be weakened; equality (58)
is false for the word w = x1:

ζ(Dx1) = ζ(x0x1) ̸= 0 = ζ(Dx1).

Proof of Theorem 6. Comparing action (57) of derivations (56) with those of D,D
on the generators of the algebra H,

Dx0 = 0, Dx1 = x0x1, Dx0 = x0x1, Dx1 = 0,

we see that δ∗ − δ⊔⊔ = D −D. Therefore application of Theorem 11 to the word
w ∈ H0 leads to the required equality:

ζ(x1 ⊔⊔w − x1 ∗ w) = ζ
(
(δ∗ − δ⊔⊔)w

)
= ζ

(
(D −D)w

)
= ζ(Dw)− ζ(Dw) = 0.

This completes the proof.

Remark. Another proof of Theorem 6, based on the shuffle and stuffle relations for
the so-called coloured polylogarithms

Lis(z) = Li(s1,s2,...,sl)(z1, z2, . . . , zl) :=
∑

n1>n2>···>nl>1

zn1
1 zn2

2 · · · znl

l

ns1
1 ns2

2 · · ·nsl
l

, (61)

can be found in [28]. (As it is easily seen, specializing z2 = · · · = zl = 1 func-
tions (61) become generalized polylogarithms (22).) We do not have a goal to
expose properties of the functional model (61) in this survey, and refer the inter-
ested reader to the works [4], [7], and [28].

12. Derivations of Ihara–Kaneko and Ohno’s relations

Theorem 11 has a natural generalization. For any n > 1, define the anti-
symmetric derivation ∂n ∈ Der(H) by the rule ∂nx0 = x0(x0 + x1)

n−1x1; as men-
tioned in the proof of Theorem 6, we have ∂1 = D −D = δ∗ − δ⊔⊔. The following
result is valid.

Theorem 12 [14] (see also [13]). For any n > 1 and any word w ∈ H0, the identity

ζ(∂nw) = 0 (62)

holds.

Further, we describe a scheme of the proof of the theorem given in the preprint [14]
(the proof in [13] lies on other ideas).

The following result, proved in the paper [21] by means of the partial-fraction
method,1 contains as particular cases Theorems 1, 3, and 7 (corresponding impli-
cations are also given in [21]).

1NB. The Russian version contains the reference on the generating-function method that is
completely wrong! ??? CHECK !!!
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Theorem 13 (Ohno’s relations). Let a word w ∈ H0 and its dual w′ = τw ∈ H0

have the following records in terms of the generators of the algebra H1:

w = ys1ys2 · · · ysl , w′ = ys′1ys′2 · · · ys′k .

Then, for any integer n > 0, the identity∑
e1,e2,...,el>0

e1+e2+···+el=n

ζ(ys1+e1ys2+e2 · · · ysl+el) =
∑

e1,e2,...,ek>0
e1+e2+···+ek=n

ζ(ys′1+e1ys′2+e2 · · · ys′k+ek)

holds.

Following [14], for each integer n > 1 define the derivation Dn ∈ Der(H) setting
Dnx0 = 0 and Dnx1 = xn

0x1. It may be easily justified that the derivations
D1, D2, . . . pairwise commute; this holds for the dual derivationsD1, D2, . . . as well.

Consider a completion of H, namely the algebra Ĥ = Q⟨⟨x0, x1⟩⟩ of formal power
series in non-commutative variables x0, x1 over the field Q. Action of the anti-
automorphism τ and of derivations δ ∈ Der(H) is naturally extended to the whole

algebra Ĥ. For simplicity, the record w ∈ ker ζ will mean that all homogeneous

components of the element w ∈ Ĥ belongs to ker ζ. The maps

D =

∞∑
n=1

Dn

n
, D =

∞∑
n=1

Dn

n

are derivations of the algebra Ĥ, and the standard relation of a derivation and
homomorphism implies that the maps

σ = exp(D), σ = τστ = exp(D)

are automorphisms of the algebra Ĥ. By the above means, Ohno’s relations may
be stated as follows.

Theorem 14 [14]. For any word w ∈ H0, the inclusion

(σ − σ)w ∈ ker ζ (63)

holds.

Proof. Since Dx0 = 0 and

Dx1 =

(
x0 +

x2
0

2
+

x3
0

3
+ · · ·

)
x1 = (− log(1− x0))x1,

we may conclude that Dnx0 = 0 and Dnx1 = (− log(1 − x0))
nx1, hence σx0 = x0

and

σx1 =

∞∑
n=0

1

n!
(− log(1− x0))

nx1 = (1− x0)
−1x1 = (1 + x0 + x2

0 + x3
0 + · · · )x1.
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Therefore, for the word w = ys1ys2 · · · ysl ∈ H0, we have

σw = σ(xs1−1
0 x1x

s2−1
0 x1 · · ·xsl−1

0 x1)

= xs1−1
0 (1 + x0 + x2

0 + · · · )x1x
s2−1
0 (1 + x0 + x2

0 + · · · )x1 · · ·
· · ·xsl−1

0 (1 + x0 + x2
0 + · · · )x1

=

∞∑
n=0

∑
e1,e2,...,el>0

e1+e2+···+el=n

xs1−1+e1
0 x1x

s2−1+e2
0 x1 · · ·xsl−1+el

0 x1;

thus σw− στw ∈ ker ζ by Theorem 13. Applying now Theorem 7, we arrive at the
desired inclusion (63).

Reminding ∂1, ∂2, . . . , consider the derivation

∂ =
∞∑

n=1

∂n
n

∈ Der(Ĥ).

Lemma 7. The following equality holds:

exp(∂) = σ · σ−1. (64)

Proof. First of all, let us note pairwise commutativity of the operators ∂n, n = 1, 2, . . . .
Indeed, since ∂n(x0 + x1) = 0 for any n > 1, it is sufficient to verify the equality
∂n∂mx0 = ∂m∂nx0 for n,m > 1. Taking in mind ∂n(x0 + x1)

k = 0, for any n > 1
and k > 0 we obtain the desired property:

∂n∂mx0 = ∂n(x0(x0 + x1)
m−1x1)

= x0(x0 + x1)
n−1x1(x0 + x1)

m−1x1 − x0(x0 + x1)
m−1x0(x0 + x1)

n−1x1

= x0(x0 + x1)
n−1(x0 + x1 − x0)(x0 + x1)

m−1x1

− x0(x0 + x1)
m−1(x0 + x1 − x1)(x0 + x1)

n−1x1

= −x0(x0 + x1)
n−1x0(x0 + x1)

m−1x1 + x0(x0 + x1)
m−1x1(x0 + x1)

n−1x1

= ∂m∂nx0.

Consider the family φ(t), t ∈ R, of automorphisms of the algebra ĤR = R⟨⟨x0, x1⟩⟩,
defined on the generators x′

0 = x0 + x1 and x1 by the rules

φ(t) : x′
0 7→ x′

0, φ(t) : x1 7→ (1− x′
0)

tx1

(
1− 1− (1− x′

0)
t

x′
0

x1

)−1

, t ∈ R.

Routine verification [14] shows that

φ(t1)φ(t2) = φ(t1 + t2), φ(0) = id,
d

dt
φ(t)

∣∣∣
t=0

= ∂, φ(1) = σ · σ−1;

hence φ(t) = exp(t∂) and substitution t = 1 leads to the required result (64).
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Proof of Theorem 12. Now let us show how Theorem 12 follows from Theorem 14
and Lemma 7. First we have

∂ = log(σ · σ−1) = log(1− (σ − σ)σ−1) = −(σ − σ)

∞∑
n=1

((σ − σ)σ−1)n−1

n
σ−1

and secondly

σ − σ = (1− σ · σ−1)σ = (1− exp(∂))σ = −∂
∞∑

n=1

∂n−1

n!
σ,

hence ∂H0 = (σ − σ)H0, and Theorem 14 yields the required identities (62).

Does there exist a simpler way of proving relations (62)? Explicit computations
in [14] show that ∂1 = δ∗ − δ⊔⊔,

∂2 = [δ∗, δ∗],

∂3 =
1

2
[δ∗, [∂1, δ∗]]−

1

2
[δ∗, ∂2]−

1

2
[δ∗, ∂2],

∂4 =
1

6
[δ∗, [∂1, [∂1, δ∗]]]−

1

6
[δ∗, [δ∗, [∂1, δ∗]]] +

1

6
[∂1, [∂2, δ∗]] +

1

3
[∂3, δ∗] +

1

3
[∂3, δ∗]

and, in addition, δ∗ + δ∗ = δ⊔⊔ + δ⊔⊔; therefore cases n = 1, 2, 3, 4 in Theorem 12
are served by induction (with Theorem 11 as inductive base). This circumstance
motivates the following hypothesis.

Conjecture 3 [14]. For any n > 1, the above-defined anti-symmetric derivation ∂n
is contained in the Lie subalgebra of Der(H) generated by the derivations δ∗, δ∗,
δ⊔⊔, and δ⊔⊔.

Note also that the preprint [14] includes some other (in comparison with Con-
jecture 2) ideas of total description of identities for multiple zeta values in terms of
shuffle-stuffle relations.

13. Open questions

In addition to the above-indicated Conjectures 1–3, we mention a series of other
important conjectures concerning the structure of the subspace ker ζ ⊂ H. Denote
by Zk the Q-vector space in R spanned by multiple zeta values of weight k; in
particular, Z0 = Q and Z1 = {0}. Then the Q-subspace Z ∈ R spanned by all
multiple zeta values is the subalgebra of R over Q graded by weight.

Conjecture 4 [8], [28]. As a Q-algebra, the algebra Z is the direct sum of the
subspaces Zk, k = 0, 1, 2, . . . .

It can be easily seen that relations (19)–(21) for multiple zeta values are homo-
geneous in weight, hence Conjecture 4 follows from Conjecture 2.

Denoting by dk the dimension of theQ-space Zk, k = 0, 1, 2, . . . , note that d0 = 1,
d1 = 0, d2 = 1 (since ζ(2) ̸= 0), d3 = 1 (since ζ(3) = ζ(2, 1) ̸= 0) and d4 = 1 (since
Z4 = Qπ4 by (32), (34), and (36)). For k > 5, above-deduced identities allow to
compute the upper bounds; for instance, d5 6 2, d6 6 2, and so on.
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Conjecture 5 [30]. For k > 3, the recurrent relations

dk = dk−2 + dk−3

hold; equivalently,
∞∑
k=0

dkt
k =

1

1− t2 − t3
.

Even if Conjectures 4 and 5 are positively solved, the question of choosing a
transcendence basis of the algebra Z and (or) a rational basis of the Q-spaces Zk,
k = 0, 1, 2, . . . , is still open. Concerning this problem, we find the next conjecture
of Hoffman rather curious.

Conjecture 6 [11]. For any k = 0, 1, 2, . . . , a basis of the Q-spaces Zk is given by
the set of numbers {

ζ(s) : |s| = k, sj ∈ {2, 3}, j = 1, . . . , ℓ(s)
}
. (65)

A serious argument for Conjecture 6 to be valid, is not only experimental con-
firmation for k 6 16 (under the hypothesis of Conjecture 2) but also agreement of
the dimension of the Q-space spanned by the numbers (65) with the dimension dk
of the spaces Zk in Conjecture 5. The last fact is proved by Hoffman in [11].

14. q-analogues of multiple zeta values

Thirty three years after Gauß’s work on hypergeometric series, Heine consid-
ered [9] series depending on the additional parameter q and possessing properties
similar to those for Gauß’s series. Moreover, when q tends to 0 (at least term-wise),
Heine’s q-series become hypergeometric series so that Gauß’s results may be derived
from the corresponding results for q-series by this limit procedure and the theory
of analytic continuation.

Similar q-extensions of classical objects are possible not only in analysis: the
interested reader is referred to Hoffman’s work [12], where possible q-deformation
of the stuffle algebra H∗ are discussed. The aim of this section is to consider
problems of q-extending multiple zeta values.

The simplest (and rather obvious) way reads as follows: for positive integers
s1, s2, . . . , sl set

ζ∗q (xs) = ζ∗q (s) = ζ∗q (s1, s2, . . . , sl)

:=
∑

n1>n2>···>nl>1

qn1s1+n2s2+···+nlsl

(1− qn1)s1(1− qn2)s2 · · · (1− qnl)sl
, |q| < 1, (66)

and distribute the Q-linear map ζ∗q over the whole algebra H1 by addition. Easy
verification shows that, when s1 > 1, we have

lim
q→1

0<q<1

(1− q)|s|ζ∗q (s) = ζ(s),
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i.e., the series in (66) are indeed q-extensions of the series in (4). In addition, ζ∗q is a

(q-parametric) homomorphism of the stuffle algebra H1
∗; for the proof of this fact, it

is sufficient to apply specialization tn = qn/(1− qn) of Hoffman’s homomorphism ϕ
in Section 10. Thus

ζ∗q (w1 ∗ w2) = ζ∗q (w1)ζ
∗
q (w2) for all w1, w2 ∈ H1.

This model of multiple q-zeta values (and also of generalized q-polylogarithms) is
given in [23]; the main drawback of the model is absence of description of other
linear and polynomial relations over Q, in other words, absence of a suitable q-
shuffle product.

Another way to q-extend (not multiple) zeta values is proposed simultaneously
and independently in the works [15] and [34]:

ζq(s) =

∞∑
n=1

σs−1(n)q
n =

∞∑
n=1

ns−1qn

1− qn
, s = 1, 2, . . . , (67)

where σs−1(n) =
∑

d|n d
s−1 denotes the sum of powers of the divisors; there the

limit relations

lim
q→1

0<q<1

(1− q)sζq(s) = (s− 1)! · ζ(s), s = 2, 3, . . . ,

are also proved. The q-zeta values (67) can be easily expressed in terms of (66)
with l = 1; namely,

ζq(1) =

∞∑
n=1

qn

1− qn
, ζq(2) =

∞∑
n=1

qn

(1− qn)2
, ζq(3) =

∞∑
n=1

qn(1 + qn)

(1− qn)3
,

ζq(4) =
∞∑

n=1

qn(1 + 4qn + q2n)

(1− qn)4
, ζq(5) =

∞∑
n=1

qn(1 + 11qn + 11q2n + q3n)

(1− qn)5

and, in general,

ζq(k) =

∞∑
n=1

qnρk(q
n)

(1− qn)k
, k = 1, 2, 3, . . . ,

where the polynomials ρk(x) ∈ Z[x] are determined recursively by formulae

ρ1 = 1, ρk+1 = (1 + (k − 1)x)ρk + x(1− x)ρ′k for k = 1, 2, . . .

(see [34]).
For s > 2 even, the series Es(q) = 1 − 2sζq(s)/Bs, where the Bernoulli num-

bers Bs ∈ Q are already defined in (3), are known as the Eisenstein series. This
circumstance allows to prove the coincidence of the rings Q[q, ζq(2), ζq(4), ζq(6),
ζq(8), ζq(10), . . . ] and Q[q, ζq(2), ζq(4), ζq(6)] (cf. the corresponding result in Sec-
tion 1 for ordinary zeta values). However, the question of constructing a model of
multiple q-zeta values, which contains the ordinary model (67), remains open. A
natural requirement to such a model is possession of q-analogues of the shuffle and
stuffle product-relations. We conclude by giving a possible q-extension of Euler’s
formula (5) for the quantity

ζq(2, 1) =
∑

n1>n2>1

qn1

(1− qn1)2(1− qn2)
.
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Theorem 15. The following identity holds:

2ζq(2, 1) = ζq(3).

Proof. As in the proof of Theorem 1, we will use the partial-fraction method,
namely, the expansion

1

(1− u)(1− uv)s
=

1

(1− v)s(1− u)
−

s−1∑
j=0

v

(1− v)j+1(1− uv)s−j
, s = 1, 2, 3, . . . ;

(68)
the identity is proved in the same way as (9), by summing the geometric progression
on the right-hand side. When s = 2, we multiply identity (68) by u(1 + v):

u(1 + v)

(1− u)(1− uv)2
=

u(1 + v)

(1− v)2(1− u)
− uv(1 + v)

(1− v)(1− uv)2
− uv(1 + v)

(1− v)2(1− uv)
,

put then u = qm, v = qn, and sum over all positive integers m,n. Finally, we
obtain the equality with the double sum

∞∑
m=1

∞∑
n=1

qm(1 + qn)

(1− qm)(1− qn+m)2
=

∞∑
n=1

∞∑
m=1

qn(1 + qm)

(1− qn)(1− qn+m)2

on the right-hand side, and

∞∑
n=1

∞∑
m=1

(
qm(1 + qn)

(1− qn)2(1− qm)
− qn+m(1 + qn)

(1− qn)(1− qn+m)2
− qn+m(1 + qn)

(1− qn)2(1− qn+m)

)

=

∞∑
n=1

1 + qn

(1− qn)2

∞∑
m=1

(
qm

1− qm
− qn+m

1− qn+m

)
−

∞∑
n=1

∞∑
m=1

qn+m(1 + qn)

(1− qn)(1− qn+m)2

on the left-hand side. Moving the last sum from the right-hand side to the left-hand
side, we deduce that

∞∑
n=1

∞∑
m=1

qn(1 + qm) + qn+m(1 + qn)

(1− qn)(1− qn+m)2

=

∞∑
n=1

1 + qn

(1− qn)2

∞∑
m=1

(
qm

1− qm
− qn+m

1− qn+m

)
=

∞∑
n=1

1 + qn

(1− qn)2

n∑
m=1

qm

1− qm

=
∞∑

n=1

1 + qn

(1− qn)2

(
qn

1− qn
+

n−1∑
m=1

qm

1− qm

)
= ζq(3) +

∑
n>m>1

(1 + qn)qm

(1− qn)2(1− qm)
.

(69)

On the other hand, the left-hand side of the last equality may be written in the
form (n+m = l)

∞∑
n=1

∞∑
l=n+1

qn + 2ql + ql+n

(1− qn)(1− ql)2
=

∑
l>n>1

qn + 2ql + ql+n

(1− ql)2(1− qn)
, (70)
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hence, taking n1 = n, n2 = m on the right-hand side of (69) and n1 = l, n2 = n
in (70), we finally arrive at the desired identity:

ζq(3) =
∑

n1>n2>1

qn2 + 2qn1 + qn1+n2

(1− qn1)2(1− qn2)
−

∑
n1>n2>1

(1 + qn1)qn2

(1− qn1)2(1− qn2)

=
∑

n1>n2>1

2qn1

(1− qn1)2(1− qn2)
.
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